Synthesis of γ , δ -Didehydrohomoglutamates by the Phosphine-Catalyzed γ -Addition Reaction to Acetylenic Esters

Carlos Alvarez-Ibarra,* Aurelio G. Csákÿ, and Cristina Gómez de la Oliva

Departamento de Química Orgánica I, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain

Received November 24, 1999

The design and synthesis of new nonproteinogenic α -amino acids is an area of current interest.¹ In particular, γ , δ -unsaturated α -amino acids have attracted attention due to their presence in natural products² and their usefulness as synthetic intermediates in the preparation of other α -amino acid derivatives,³ as well as their pharmacological interest.⁴

Phosphines are known to impart electrophilic character to the γ -carbon of acetylenic esters (Trost reaction).⁵ This reaction has been used for C–C bond formation at carbon C-4 of ethyl 2-butynoate (**1**) by using carbon pronucleophiles with active hydrogen atoms.^{5b} Therefore, glycines that possessed an enhanced acidity of the α -CH on the basis of a suitably masked nitrogen atom (**2**, **3**) could serve satisfactorily as pronucleophiles in the Trost reaction. Their reaction with **1** should afford the N-protected γ , δ -didehydrohomoglutamates **4**, which are difficult to prepare by previously reported procedures⁶ (Scheme 1).

(2) (a) Cramer, U.; Rehfeldt, A. G.; Spener, F. *Biochemistry* **1980**, *19*, 3074. (b) Tsubotani, S.; Funabashi, Y.; Takamoto, M.; Hakoda, S.; Harada, S. *Tetrahedron* **1991**, *47*, 8079.

(3) (a) Bartlett, P. A.; Tanzella, D. J.; Barstow, J. F.; *Tetrahedron Lett.* **1982**, *23*, 619. (b) Ohfune, Y.; Kurokawa, N. *Tetrahedron Lett.* **1985**, *26*, 5307. (c) Kurokawa, N.; Ohfune, Y. *J. Am. Chem. Soc.* **1986**, *108*, 6041. (d) Baumann, H.; Duthaler, R. O. *Helv. Chim. Acta* **1988**, *71*, 1025. (d) Broxterman, Q. B.; Kaptein, B.; Kamphuis, J.; Shoemaker, H. E. *J. Org. Chem.* **1992**, *57*, 6286.

(4) (a) Dennis, R. L.; Plant, W. J.; Skinner, C. G.; Sutherland, G. L. *J. Am. Chem. Soc.* **1955**, 77, 2362. (b) Edelson, J.; Fissekis, J. D.; Skinner, C. G.; Shive, W. *J. Am. Chem. Soc.* **1958**, 80, 2698. (c) Shannon, P.; Marcotte, P.; Coppersmith, S.; Walsh, C. *Biochemistry* **1979**, *18*, 3917. (d) Santoso, S.; Kemmer, T.; Trowitzsch, W. Liebigs Ann. Chem. **1981**, 658.

(5) (a) Trost, B. M.; Kazmaier, U. J. Am. Chem. Soc. 1992, 114, 7933.
(b) Trost, B. M.; Li, C.-J. J. Am. Chem. Soc. 1994, 116, 3167. (c) Trost, B. M.; Li, C.-J. J. Am. Chem. Soc. 1994, 116, 10819. (d) Rychnovsky, S. D.; Kim. J. J. Org. Chem. 1994, 59, 2659. (e) Trost, B. M.; Dake, G. R. J. Org. Chem. 1997, 62, 5670.

(6) For some leading references on the most relevant methods for the synthesis of γ,∂-unsaturated amino acids, see the following. (i) Ene reaction of sulfonylimines: Yao, S.; Fang, X.; Jørgensen, K. A. J. Chem. Soc., Chem. Commun. **1998**, 2547. (ii) Allylation of electrophilic glycines: Roos, E. C.; Mooiweer, H. H.; Hiemstra, H.; Speckam, W. C.; Kaptein, B.; Boesten, W. H. J.; Kamphuis, J. J. Org. Chem. **1992**, 57, 6769. (iii) Allylation of nucleophilic glycines: (a) Chinchilla, R.; Falvello, L. R.; Galindo, N.; Nájera, C. Angew. Chem., Int. Ed. Engl. **1997**, 36, 995. (b) Seebach, D.; Hoffmann, M. Eur. J. Org. Chem. **1998**, 1337. (iv) Ireland-Claisen reaction on allyl ester enolates: (a) Kazmaier, U.; Maier, S. Chem. Commun. **1998**, 5255. (b) Miller, J. F.; Termin, A.; Koch, K. Piscopio, A. D. J. Org. Chem. **1998**, 63, 3158. (c) Kazmaier, U.; Schneider, C. Synthesis **1998**, 1321. (v) Hydrogenation of conjugated dienamides: Burk, M. J.; Allen, J. G.; Kiesman, W. F. J. Am. Chem. Soc. **1998**, 120, 657. (vi) Palladium-catalyzed allylic substitutions: (a) Trost, B. M.; Ariza, X. Angew. Chem., Int. Ed. **1997**, 36, 2635. (b) Kazmaier, U.; Zumpe, F. L. Angew. Chem., Int. Ed. Engl. **1999**, 38, 1468 and references cited therein.

Results and Discussion

At the onset of our study, glycine imines **2** were chosen as the pronucleophilic counterpart.⁷ Heating alkyne **1** with an equimolecular ammount of **2a** (R¹ = H, R², R³ = Ph) with **1** in toluene solution with a catalytic ammount of triphenylphosphine (5% mol) in the presence of an acetic acid-sodium acetate buffer (50% mol)^{5a} resulted in the recovery of the starting material together with (*E*)ethyl 4-acetoxy-2-butenoate (40%).⁸ The same result was obtained when the bis(methylthiomethylene)glycinate **2b** (R¹ = H, R², R³ = SMe) or the aldimine^{7.9} **2c** (R¹ = H, R² = p-Cl-C₆H₄, R³ = H) were used as pronucleophiles.

Next, more basic reaction conditions were tested. Thus, the acetic acid–sodium acetate buffer previously used was replaced by ^tBuOH–KO^tBu (50% mol), which should guarantee¹⁰ the deprotonation of glycinates **2**. However, instead of the corresponding γ , δ -didehydrohomoglumates **4**, the α , β -didehydroglutamates **5** (Scheme 2) were the only products obtained. The results are given in Table 1.

It has to be pointed out that compounds **5** were not formed in the absence of Ph_3P and that the Michael addition of the potassium enolate of **2b** with **1** in THF solution did only take place in the presence of a crown ether.¹¹ Therefore, the formation of the α,β -didehydroglutamates **5** must be accounted for by the protonation

⁽¹⁾ For recent references, see: (a) Burgess, K.; Ho, K.-K.; Pettit, B. M. J. Am. Chem. Soc. **1995**, 117, 54. (b) Obrecht, D.; Altorfer, M.; Lehmann, C.; Schönholzer, P.; Müller, K. J. Org. Chem. **1996**, 61, 4080. (c) Xi, N.; Alemany, L. B.; Ciufolini, M. A. J. Am. Chem. Soc. **1998**, 120, 80 and references cited therein.

⁽⁷⁾ For pK_a data of glycine aldimines and ketimines, see: O'Donnell, M. J.; Bennett, W. D.; Jacobsen, W. N.; Ma, Y.; Huffman, J. C. Tetrahedron Lett. **1989**, *30*, 3909

^{(8) (}*E*)-Ethyl 4-acetoxy-2-butenoate is the product of the γ -addition of acetate anion to ethyl 2-butynoate. See: Alvarez-Ibarra, C.; Csákÿ, A. G.; Gómez de la Oliva, C. *Tetrahedron Lett.* **1999**, *40*, 8465.

⁽⁹⁾ The α -methylene of glycine aldimines is more acidic than that of ketimines. See : López, A.; Pleixats, R. *Tetrahedron: Asymmetry* **1998**, *9*, 1967 and references cited therein.

⁽¹⁰⁾ Glycine imines and iminodithiocarbonates are deprotonated by KO^tBu in THF. See, for example: (a) Stork, G.; Leong, A. Y. W.; Touzin, A. M. *J. Org. Chem.* **1976**, *41*, 3491. (b) Hoppe, D.; Beckmann, L. *Lieb. Ann. Chem.* **1979**, 2066. (c) Alvarez-Ibarra, C.; Csáky, A. G.; Colmenero, B.; Quiroga, M. L. *J. Org. Chem.* **1997**, *62*, 2478.

 Table 1. Addition of Glycinates 2 to Alkyne 1

			-	-
2	\mathbb{R}^2	\mathbb{R}^3	(Z)- 5 ^a (%)	(<i>E</i>)- 5 ^{<i>a</i>} (%)
2a 2b 2c	Ph SMe <i>p</i> -ClC ₆ H ₄	Ph SMe H	(Z)- 5a (50) (Z)- 5b (60) (Z)- 5c (55)	(<i>E</i>)- 5a (40) (<i>E</i>)- 5b (25) (<i>E</i>)- 5c (10)

^a Isolated yield.

(^tBuOH) of the initially formed phosphonium enolate **I** followed by a Michael addition of the potassium enolate of **2** to the vinylphosphonium salt **II**.¹² A [1,3]H shift promoted by the acidity of the hydrogen atom α to the imine moiety, with final β -elimination of Ph₃P, should finally give rise to the observed products **5** (Scheme 2).

On the other hand, when a toluene solution of ethyl nitroacetate (**3a**, R¹ = H) was made to react with **1** and Ph₃P (5% mol) in the presence of the AcOH–NaOAc (50% mol) buffer, (*E*)-ethyl 4-acetoxy-2-butenoate (40%) was again isolated,⁸ and none of the corresponding **4** was observed. However, when the 'BuOH–KO'Bu (50% mol) buffer was used, the expected γ -addition product **4a** was obtained, as a single (*E*)-isomer. This result was extended to the α -alkyl substituted nitroacetates **3b**–**g**, which afforded the corresponding α , α -disubstituted nitroacetates **4b**–**g**, exclusively as their (*E*)-isomers. The nitro group in compounds **4** was reduced¹³ to NH₂, which finally allowed for the synthesis of the (*E*)-diethyl γ , δ -didehydrohomoglutamates **6** (Scheme 3). The results are gathered in Table 2.

Conclusion

Although the Trost reaction of glycine imines **2** or nitroacetates **3** with the alkynoic ester **1** did not work under standard conditions, the enforcement of the basicity of the reaction medium by the use of a 'BuOH–KO'Bu buffer allowed for the γ -addition reaction to take place, but only in the case of compounds **3**. In this way, the Trost reaction has been extended to the synthesis of nonproteinogenic α -amino acid derivatives, by means of the addition of the nitroacetates **3** to the alkynoic ester **1** followed by reduction of the NO₂ group to NH₂.

Table 2. Addition of Nitroacetates 3 to 1^a

no.	\mathbb{R}^1	3	4 ^b (%)	6 ^b (%)
1	Н	3a	4a (65)	6a (90)
2	Me	3b	4b (60)	6b (85)
3	Et	3c	4c (50)	6c (85)
4	$CH_2C_6H_5$	3d	4d (60)	6d (90)
5	CH_2 - <i>p</i> -BrC ₆ H ₅	3e	4e (55)	6e (85)
6	CH ₂ CO ₂ Et	3f	4f (60)	6f (90)
7	CH ₂ CH=CH ₂	3g	4g (60)	6g (85)

 a Synthesis of the $\gamma, \delta\text{-didehydrohomoglutamates}$ 6. b Isolated yield.

Experimental Section

All starting materials were commercially available researchgrade chemicals and used without further purification. Toluene was distilled after refluxing over Na/benzophenone. Silica gel 60 F₂₅₄ was used for TLC, and the spots were detected with UV. Flash column chromatography was carried out on silica gel 60. IR spectra have been recorded as CHCl₃ solutions. ¹H and ¹³C NMR spectra were recorded at 200 and 50.5 MHz, respectively, in CDCl₃ solution with TMS as internal reference. Glycine imines^{10a,14} **2a,c**, iminodithiocarbonate^{10b} **2b**, and nitroacetates¹⁵ **3** were prepared following previously described procedures.

Addition of Compounds 2 or 3 to Ethyl 2-Butynoate (1) in the Presence of AcOH–NaOAc. General Procedure. To a solution of PPh₃ (10 mg, 37 μ mol) in toluene (0.75 mL) were added NaOAc (31 mg, 0.37 mmol), AcOH (25 μ L, 0.37 mmol), ethyl 2-butynoate (1) (94 μ L, 0.75 mmol), and a solution of the glycine imine 2 or nitroacetate 3 (0.75 mmol) in toluene (0.75 mL). The mixture was heated at 80 °C for 24 h. The solution was filtered, and the remaining solid material was washed with Et₂O (3 × 0.5 mL). Evaporation of the solvent afforded an oil that was purified by chromatography (hexane–Et₂O, 80:20).

Addition of Compounds 2 or 3 to Ethyl 2-Butynoate (1) in the Presence of 'BuOH–KO'Bu. General Procedure. To a solution of PPh₃ (10 mg, 37 μ mol) in toluene (0.75 mL) were added KO'Bu (41 mg, 0.37 mmol), 'BuOH (35 μ L, 0.37 mmol), ethyl 2-butynoate (1), (94 μ L, 0.75 mmol), and a solution of the glycine imine 2 or nitroacetate 3 (0.75 mmol) in toluene (0.75 mL). All operations were continued as above.

(*E*)-Diethyl 5-nitro-2-hexenodioate (4a): colorless oil (65%); IR (CHCl₃) ν 1751, 1718, 1662, 1566 cm⁻¹; ¹H NMR δ 6.76 (1H, dt, J = 15.5 Hz, ³J = 7.5 Hz), 5.90 (1H, dt, J = 15.5 Hz, ⁴J = 1.5 Hz), 5.16 (1H, dd, ³J = 8.5 Hz, ³J = 5.5 Hz), 4.24 (2H, q, ³J = 7.0 Hz), 4.12 (2H, q, ³J = 7.0 Hz), 3.18–2.90 (2H, m), 1.25 (3H, t, ³J = 7.0 Hz), 1.21 (3H, t, ³J = 7.0 Hz) ppm; ¹³C NMR δ 165.3, 163.5, 139.1, 126.2, 86.1, 63.5, 60.7, 32.5, 14.1, 13.8 ppm. Anal. Calcd for C₁₀H₁₅NO₆: C, 48.98; H, 6.17; N, 5.71. Found: C, 48.91; H, 6.02; N, 5.93.

(*E*)-Diethyl 5-Methyl-5-nitro-2-hexenodioate (4b): colorless oil (60%); IR (CHCl₃) ν 1751, 1720, 1658, 1556 cm⁻¹; ¹H NMR δ 6.69 (1H, dt, J = 15.5 Hz, ³J = 7.5 Hz), 5.88 (1H, dt, J = 15.5 Hz, ⁴J = 1.5 Hz), 4.26 (2H, q, ³J = 7.0 Hz), 4.16 (2H, q, ³J = 7.0 Hz), 3.06 (1H, ddd, ²J = 14.5 Hz, ³J = 7.5 Hz, ⁴J = 1.5 Hz), 2.94

⁽¹¹⁾ Alvarez Ibarra, C.; Csáky, A. G.; Martín Ortega, E.; de la Morena, M. J.; Quiroga, M. L. *Tetrahedron Lett.* **1997**, *38*, 4501.

⁽¹²⁾ The product of the attack of the potassium enolates of **2** to the α -carbon of **1** was not observed. This reaction course has been proposed for the addition of nitrogen nucleophiles to the α -carbon of alkynoates. See: Trost, B. M.; Dake, G. R. *J. Am. Chem. Soc.* **1997**, *119*, 7595. (13) See, for example: Battersby, A. R.; Baker, M. G.; Broadbent,

⁽¹³⁾ See, for example: Battersby, A. R.; Baker, M. G.; Broadbent, H. A.; Fookes, J. R.; Leeper, F. J. *J. Chem. Soc., Perkin Trans.* 1 **1987**, 2027.

⁽¹⁴⁾ O'Donnell, M. J.; Polt, R. L. J. Org. Chem. **1982**, 47, 2663. (15) Shipchandler, M. T. Synthesis **1979**, 666.

(1H, ddd, ${}^{2}J$ = 14.5 Hz, ${}^{3}J$ = 7.5 Hz, ${}^{4}J$ = 1.5 Hz), 1.73 (3H, s), 1.27 (3H, t, ${}^{3}J$ = 7.0 Hz), 1.26 (3H, t, ${}^{3}J$ = 7.0 Hz) ppm; ${}^{13}C$ NMR δ 166.5, 165.3, 138.8, 127.2, 91.4, 63.2, 60.6, 39.0, 21.3, 14.2, 13.8 ppm. Anal. Calcd for C₁₁H₁₇NO₆: C, 50.96; H, 6.61; N 5.40. Found: C, 51.23; H, 6.49; N, 5.65.

(*E*)-Diethyl 5-Ethyl-5-nitro-2-hexenodioate (4c): colorless oil (50%); IR (CHCl₃) ν 1751, 1720, 1658, 1556 cm⁻¹; ¹H NMR δ 6.64 (1H, dt, J = 15.5 Hz, ³J = 7.5 Hz), 5.86 (1H, dt, J = 15.5 Hz, ⁴J = 1.5 Hz), 4.22 (2H, q, ³J = 7.0 Hz), 4.12 (2H, q, ³J = 7.0 Hz), 3.01 (2H, dd, ³J = 7.5 Hz, ⁴J = 1.5 Hz), 2.20 (1H, dq, ²J = 13.0 Hz, ³J = 7.5 Hz), 2.17 (1H, dq, ²J = 13.0 Hz, ³J = 7.5 Hz), 2.17 (2H, dq, ³J = 7.5 Hz), 1.22 (3H, t, ³J = 7.0 Hz), 1.21 (3H, t, ³J = 7.0 Hz), 0.87 (3H, t, ³J = 7.5 Hz) ppm; ¹³C NMR δ 165.9, 165.3, 138.7, 126.8, 95.3, 63.0, 60.6, 36.0, 27.2, 14.0, 13.8, 7.9 ppm. Anal. Calcd for C₁₂H₁₉-NO₆: C, 52.74; H, 7.01; N, 5.13. Found: C, 52.87; H, 7.16; N, 4.97.

(*E*)-Diethyl 5-benzyl-5-nitro-2-hexenodioate (4d): colorless oil (60%); IR (CHCl₃) ν 1751, 1714, 1658, 1556 cm⁻¹; ¹H NMR δ 7.27–7.02 (5H, m), 6.73 (1H, dt, J = 15.5 Hz, ${}^{3}J = 7.5$ Hz), 5.87 (1H, dt, J = 15.5 Hz, ${}^{4}J = 1.5$ Hz), 4.21 (2H, q, ${}^{3}J = 7.0$ Hz), 4.13 (2H, q, ${}^{3}J = 7.0$ Hz), 3.55 (1H, d, ${}^{2}J = 14.5$ Hz), 3.41 (1H, d, ${}^{2}J = 14.5$ Hz), 2.87 (2H, dd, ${}^{3}J = 7.5$ Hz, ${}^{4}J = 1.5$ Hz), 1.24 (3H, t, ${}^{3}J = 7.0$ Hz), 1.22 (3H, t, ${}^{3}J = 7.0$ Hz) ppm; ¹³C NMR δ 164.6, 164.3, 137.9, 131.5, 128.9, 127.9, 127.1, 126.0, 94.3, 62.2, 59.7, 38.9, 34.9, 13.2, 12.8 ppm. Anal. Calcd for C₁₇H₂₁-NO₆: C, 60.89; H, 6.31; N, 4.18. Found: C, 60.80; H, 6.43; N, 4.30.

(*E*)-Diethyl 5-(*p*-bromobenzyl)-5-nitro-2-hexenodioate (4e): colorless oil (55%); IR (CHCl₃) ν 1751, 1716, 1658, 1558 cm⁻¹; ¹H NMR δ 7.36 (2H, d, ³*J* = 8.5 Hz), 6.90 (2H, d, ³*J* = 8.5 Hz), 6.70 (1H, dt, *J* = 15.5 Hz, ³*J* = 7.5 Hz), 5.87 (1H, dt, *J* = 15.5 Hz, ⁴*J* = 1.0 Hz), 4.22 (2H, q, ³*J* = 7.0 Hz), 4.14 (2H, q, ³*J* = 7.0 Hz), 3.50 (1H, d, ²*J* = 14.5 Hz), 3.37 (1H, d, ²*J* = 14.5 Hz), 2.87 (2H, dd, ³*J* = 7.5 Hz, ⁴*J* = 1.0 Hz), 1.23 (3H, t, ³*J* = 7.0 Hz), 1.21 (3H, t, ³*J* = 7.0 Hz) ppm; ¹³C NMR δ 164.4, 164.2, 137.5, 131.1, 130.5, 130.1, 126.1, 121.4, 93.9, 62.3, 59.7, 38.3, 34.9, 13.2, 12.8 ppm. Anal. Calcd for C₁₇H₂₀BrNO₆: C, 49.29; H, 4.87; N, 3.38. Found: C, 49.09; H, 4.95; N, 3.40.

(*E*)-Diethyl 5-ethoxycarbonyl-5-nitro-2-heptenodioate (4f): colorless oil (60%); IR (CHCl₃) ν 1738, 1716, 1660, 1562 cm⁻¹; ¹H NMR δ 6.68 (1H, dt, J = 15.5 Hz, ${}^{3}J = 7.5$ Hz), 5.87 (1H, dt, J = 15.5 Hz, ${}^{4}J = 1.5$ Hz), 4.25 (2H, q, ${}^{3}J = 7.0$ Hz), 4.14 (2H, q, ${}^{3}J = 7.0$ Hz), 4.10 (2H, q, ${}^{3}J = 7.0$ Hz) 3.26 (1H, ddd, ${}^{2}J = 15.0$ Hz, ${}^{3}J = 7.5$ Hz, ${}^{4}J = 1.5$ Hz), 3.25 (1H, d, ${}^{2}J = 17.0$ Hz) 3.16 (1H, d, ${}^{2}J = 17.0$ Hz), 3.12 (1H, ddd, ${}^{2}J = 15.0$ Hz, ${}^{3}J = 7.5$ Hz, ${}^{4}J = 1.5$ Hz), 1.24 (3H, t, ${}^{3}J = 7.0$ Hz), 1.22 (3H, t, ${}^{3}J = 7.0$ Hz), 1.20 (3H, t, ${}^{3}J = 7.0$ Hz) ppm; ¹³C NMR δ 167.8, 165.2, 164.8, 138.4, 127.5, 91.6, 63.6, 61.6, 60.7, 38.4, 36.9, 14.2, 14.0, 13.6 ppm. Anal. Calcd for C₁₄H₂₁NO₈: C, 50.75; H, 6.39; N, 4.23. Found: C, 50.89; H, 6.30; N, 4.44.

(*E*)-Diethyl 5-allyl-5-nitro-2-heptenodioate (4g): colorless oil (60%); IR (CHCl₃) ν 1749, 1716, 1658, 1556 cm⁻¹; ¹H NMR δ 6.65 (1H, dt, ^{3}J = 15.5 Hz, ^{3}J = 7.5 Hz), 5.86 (1H, dt, J= 15.5 Hz, ^{4}J = 1.5 Hz), 5.65–5.44 (1H, m), 5.21–5.12 (2H, m) 4.22 (2H, q, ^{3}J = 7.0 Hz), 4.12 (2H, q, ^{3}J = 7.0 Hz), 2.99 (2H, ddd, ^{2}J = 7.5 Hz, ^{3}J = 7.5 Hz, ^{4}J = 1.5 Hz), 2.89 (2H, dd, ^{2}J = 7.0 Hz), 1.22 (3H, t, ^{3}J = 7.0 Hz), 1.21 (3H, t, ^{3}J = 7.0 Hz) ppm; ¹³C NMR δ 165.5, 165.3, 138.5, 128.8, 127.0, 122.0, 94.1, 63.1, 60.7, 38.4, 36.3, 14.2, 13.8 ppm. Anal. Calcd for C₁₃H₁₉-NO₆: C, 54.73; H, 6.71; N, 4.91. Found: C, 54.51; H, 6.36; N, 5.03.

(Z)-Diethyl 2-(diphenylamino)-3-methyl-2-pentenodioate ((Z)-5a): colorless oil (50%); IR (CHCl₃) ν 1724, 1654 cm⁻¹; ¹H NMR δ 7.68–7.08 (10H, m), 4.04 (2H, q, ³J = 7.0 Hz), 3.78 (2H, q, ³J = 7.0 Hz), 3.42 (2H, s), 1.82 (3H, s), 1.16 (3H, t, ³J = 7.0 Hz), 1.01 (3H, t, ³J = 7.0 Hz) ppm; ¹³C NMR δ 169.9, 168.9, 162.9, 138.3, 136.8, 135.8, 129.7, 128.3, 127.6, 127.1, 126.9, 59.4, 59.3, 38.7, 19.8, 13.2, 13.0 ppm. Anal. Calcd for C₂₃H₂₅NO₄: C, 72.80; H, 6.64; N, 3.69. Found: C, 72.72; H, 6.71; N, 3.57.

(*E*)-Diethyl 2-(diphenylamino)-3-methyl-2-pentenodioate ((*E*)-5a): colorless oil (40%); IR (CHCl₃) ν 1718, 1600 cm⁻¹; ¹H NMR δ 7.68–7.12 (10H, m), 4.01 (2H, q, ³*J* = 7.0 Hz), 3.60 (2H, q, ³*J* = 7.0 Hz), 3.41 (2H, s), 2.01 (3H, s), 1.07 (3H, t, ³*J* = 7.0 Hz), 0.96 (3H, t, ³*J* = 7.0 Hz) ppm; ¹³C NMR δ 171.1, 168.7, 164.5, 139.3, 137.8, 137.0, 130.4, 129.1, 128.9, 128.1, 127.7, 60.5, 59.9, 40.3, 19.1, 14.0, 13.7 ppm. Anal. Calcd for C₂₃H₂₅NO₄: C, 72.80; H, 6.64; N, 3.69. Found: C, 72.84; H, 6.78; N, 3.89. (Z)-Diethyl 2-bis[methythiomethylene]amino-3-methyl-2-pentenodioate ((Z)-5b): colorless oil (60%); IR (CHCl₃) ν 1715 cm⁻¹; ¹H NMR δ 4.25 (2H, q, ³J = 7.0 Hz), 4.15 (2H, q, ³J = 7.0 Hz), 3.55 (2H, s), 2.47 (3H, s), 1.65 (3H, s), 1.27 (3H, s), 1.26 (3H, s) ppm; ¹³C NMR δ 170.9 165.6, 163.5, 135.8, 128.7, 61.3, 60.7, 40.3, 19.2, 15.0, 14.2, 14.1 ppm. Anal. Calcd for C₁₃H₂₁-NO₄S₂: C, 48.88; H, 6.63; N, 4.38. Found: C, 48.97; H, 6.81; N, 4.52.

(*E*)-Diethyl 2-bis[methythiomethylene]amino-3-methyl-2-pentenodioate ((*E*)-5b): colorless oil (25%); IR (CHCl₃) ν 1720 cm⁻¹; ¹H NMR δ 4.20 (2H, q, ${}^{3}J$ = 7.0 Hz), 4.03 (2H, q, ${}^{3}J$ = 7.0 Hz), 2.98 (2H, s), 2.43 (3H, s), 2.04 (3H, s), 1.27 (3H, s), 1.26 (3H, s) ppm; ¹³C NMR δ 170.4 165.1, 163.9, 135.4, 128.3, 60.6, 60.5, 39.4, 20.1, 14.9, 14.1, 14.0 ppm. Anal. Calcd for C₁₃H₂₁-NO₄S₂: C, 48.88; H, 6.63; N, 4.38. Found: C, 49.03; H, 6.85; N, 4.55.

(Z)-Diethyl 2-(*p*-chlorophenyl)methyleneamino-3-methyl-2-pentenodioate ((Z)-5c): colorless oil (55%); IR (CHCl₃) ν 1710, 1637 cm⁻¹; ¹H NMR δ 8.07 (1H, s), 7.66 (2H, d, ${}^{3}J = 8.5$ Hz), 7.20 (2H, d, ${}^{3}J = 8.5$ Hz), 4.20 (2H, q, ${}^{3}J = 7.0$ Hz), 4.03 (2H, q, ${}^{3}J = 7.0$ Hz), 3.56 (2H, s), 1.99 (3H, s), 1.25 (3H, t, ${}^{3}J = 7.0$ Hz), 1.13 (3H, t, ${}^{3}J = 7.0$ Hz) ppm; ¹³C NMR δ 170.8, 165.5, 156.2, 139.0, 135.0, 133.5, 129.7, 128.1, 127.9, 60.9, 60.7, 38.7, 19.9, 14.3, 14.2 ppm. Anal. Calcd for C1₇H₂₀ClNO₄: C, 60.45; H, 5.97; N, 4.15. Found: C, 60.34; H, 5.98; N, 4.35.

(*E*)-Diethyl 2-(*p*-chlorophenyl)methyleneamino-3-methyl-2-pentenodioate ((*E*)-5c): colorless oil (10%); IR (CHCl₃) ν 1700, 1620 cm⁻¹; ¹H NMR δ 8.14 (1H, s), 7.69 (2H, d, ${}^{3}J = 8.5$ Hz), 7.24 (2H, d, ${}^{3}J = 8.5$ Hz), 4.25 (2H, q, ${}^{3}J = 7.0$ Hz), 4.02 (2H, q, ${}^{3}J = 7.0$ Hz), 3.35 (2H, s), 2.06 (3H, s), 1.25 (3H, t, ${}^{3}J = 7.0$ Hz), 1.13 (3H, t, ${}^{3}J = 7.0$ Hz) ppm; ¹³C NMR δ 165.4, 160.5, 156.2, 135.1, 130.5, 130.0, 129.5, 128.0, 127.5, 60.7, 60.0, 35.9, 20.5, 14.3, 14.2 ppm. Anal. Calcd for C1₇H₂₀ClNO4: C, 60.45; H, 5.97; N, 4.15. Found: C, 60.57; H, 6.12; N, 4.31

Reduction of the NO₂ Group in Compounds 4. Synthesis of the γ , δ -**Didehydrohomoglutamates 6. General Procedure.** To a solution of **4** (0.41 mmol) in AcOH (7 mL) at 0 °C was added Zn (685 mg, 10.5 mmol) in three portions in intervals of 5 min. The mixture was stirred for 2 h at room temperature, filtered through a pad of Celite, and washed with Et₂O (3 × 10 mL). The filtrate was diluted with water (10 mL), cooled to 0 °C, and alkalinized with 10 M NaOH to pH = 12. The mixture was extracted with Et₂O (3 × 10 mL), and the combined extracts were dried on MgSO₄. Evaporation of the solvent afforded an oil that was purified by chromatography (hexane–ethyl acetate 80:20).

(*E*)-Diethyl 2-amino-4-hexenedioate (6a): colorless oil (90%); IR (CHCl₃) ν 3394, 3327, 1716, 1656 cm⁻¹; ¹H NMR δ 6.84 (1H, dt, J = 15.5 Hz, ³J = 7.5 Hz), 5.85 (1H, dt, J = 15.5 Hz, ⁴J = 1.5 Hz), 4.13 (2H, q, ³J = 7.0 Hz), 4.12 (2H, q, ³J = 7.0 Hz), 3.53 (1H, dd, ³J = 7.5 Hz, ³J = 5.0 Hz), 2.66–2.35 (2H, m), 1.55 (2H, s), 1.22 (6H, t, ³J = 7.0 Hz) ppm; ¹³C NMR δ 175.0, 143.5, 124.4, 61.1, 60.3, 53.5, 37.4, 14.1 ppm. Anal. Calcd for C₁₀H₁₇NO₄: C, 55.80; H, 7.96; N, 6.51. Found: C, 55.98; H, 8.10; N. 6.42.

(*E*)-Diethyl 2-amino-2-methyl-4-hexenodioate (6b): colorless oil (85%); IR (CHCl₃) ν 3390, 1718, 1652 cm⁻¹; ¹H NMR δ 6.80 (1H, dt, J = 15.5 Hz, ³J = 7.5 Hz), 5.83 (1H, dt, J = 15.5 Hz, ⁴J = 1.5 Hz), 4.12 (2H, q, ³J = 7.0 Hz), 4.11 (2H, q, ³J = 7.0 Hz), 2.56 (1H, ddd, ²J = 14.0 Hz, ³J = 7.5 Hz, ⁴J = 1.5 Hz), 2.37 (1H, ddd, ²J = 14.0 Hz, ³J = 7.5 Hz, ⁴J = 1.5 Hz), 2.37 (1H, ddd, ²J = 14.0 Hz, ³J = 7.0 Hz), 1.14 (3H, t, ³J = 7.0 Hz), 1.60 (2H, s), 1.21 (3H, t, ³J = 7.0 Hz), 1.14 (3H, t, ³J = 7.0 Hz) ppm; ¹³C NMR δ 167.9, 165.0, 142.0, 124.2, 60.3, 59.3, 56.5, 42.3, 16.1, 13.2 ppm. Anal. Calcd for C₁₁H₁₉NO₄: C, 57.63; H, 8.35; N, 6.11. Found: C, 57.55; H, 8.47; N, 6.30.

(*E*)-Diethyl 2-amino-2-ethyl-4-hexenodioate (6c): colorless oil (85%); IR (CHCl₃) ν 3387, 3305, 1716, 1654 cm⁻¹; ¹H NMR δ 6.79 (1H, dt, J = 15.5 Hz, ³J = 8.0 Hz), 5.83 (1H, d, J = 15.5 Hz), 4.13 (2H, q, ³J = 7.0 Hz), 4.11 (2H, q, ³J = 7.0 Hz), 2.60 (1H, dd, ²J = 14.0 Hz, ³J = 8.0 Hz), 2.38 (1H, dd, ²J = 14.0 Hz, ³J = 8.0 Hz), 1.95–1.45 (4H, m), 1.22 (3H, t, ³J = 7.0 Hz), 1.21 (3H, t, ³J = 7.0 Hz), 0.81 (3H, t, ³J = 7.5 Hz) ppm; ¹³C NMR δ 164.9, 142.0, 124.2, 60.3, 60.1, 59.3, 41.0, 28.7, 13.3, 13.2, 7.1 ppm. Anal. Calcd for C₁₂H₂₁NO₄: C, 59.24; H, 8.70; N, 5.76. Found: C, 59.41; H, 8.60; N, 5.91.

(*E*)-Diethyl 2-amino-2-benzyl-4-hexenodioate (6d): colorless oil (90%); IR (CHCl₃) ν 3681, 3315, 1714, 1656 cm⁻¹; ¹H NMR δ 7.23–7.05 (5H, m), 6.80 (1H, dt, J= 15.5 Hz, ${}^3J=$ 8.0 Hz), 5.86 (1H, d, J= 15.5 Hz), 4.11 (2H, q, ${}^3J=$ 7.0 Hz), 4.10 (2H, q, ${}^3J=$ 7.0 Hz), 3.12 (1H, d, ${}^2J=$ 13.0 Hz), 2.75 (1H, d, ${}^2J=$ 13.0 Hz), 2.72 (1H, dd, ${}^2J=$ 13.5 Hz, ${}^3J=$ 8.0 Hz), 2.41 (1H, dd, ${}^2J=$ 13.5 Hz, ${}^3J=$ 8.0 Hz), 2.41 (1H, dd, ${}^2J=$ 13.5 Hz, ${}^3J=$ 8.0 Hz), 1.73 (2H, s), 1.21 (3H, t, ${}^3J=$ 7.0 Hz), 1.19 (3H, t, ${}^3J=$ 7.0 Hz) ppm; ${}^{13}{\rm C}$ NMR δ 174.2, 164.9, 141.6, 134.7, 129.0, 127.5, 126.2, 124.5, 60.7, 60.4, 59.4, 44.8, 41.6, 13.2 ppm. Anal. Calcd for ${\rm C}_{17}{\rm H}_{23}{\rm NO}_4$: C, 66.86; H, 7.59; N, 4.59. Found: C, 67.99; H, 7.50; N, 4.62.

(*E*)-Diethyl 2-amino-2-(*p*-bromo)benzyl-4-hexenodioate (6e): colorless oil (85%); IR (CHCl₃) ν 3683, 3381, 1716, 1656 cm⁻¹; ¹H NMR δ 7.36 (2H, d, ³*J* = 8.5 Hz), 7.34 (2H, d, ³*J* = 8.5 Hz), 6.78 (1H, dt, *J* = 15.5 Hz, ³*J* = 8.0 Hz), 5.86 (1H, d, *J* = 15.5 Hz), 4.11 (2H, q, ³*J* = 7.0 Hz), 4.10 (2H, q, ³*J* = 7.0 Hz), 3.07 (1H, d, ²*J* = 13.5 Hz), 2.70 (1H, d, ²*J* = 13.5 Hz), 2.71 (1H, dd, ²*J* = 14.0 Hz, ³*J* = 8.0 Hz), 2.40 (1H, dd, ²*J* = 14.0 Hz, ³*J* = 8.0 Hz), 1.96 (2H, s), 1.21 (3H, t, ³*J* = 7.0 Hz), 1.20 (3H, t, ³*J* = 7.0 Hz) ppm; ¹³C NMR δ 174.0, 164.8, 141.2, 133.7, 130.7, 130.5, 124.5, 120.3, 60.5, 59.4, 44.0, 41.5, 13.2 ppm. Anal. Calcd for C₁₇H₂₂BrNO4: C, 53.14; H, 5.77; N, 3.65. Found: C, 53.35; H, 5.68; N, 3.81.

(*E*)-Diethyl 3-amino-2-ethoxycarbonyl-5-heptenodioate (6f): colorless oil (90%); IR (CHCl₃) ν 3383, 3315, 1728,1656 cm⁻¹; ¹H NMR δ 6.77 (1H, dt, J = 15.5 Hz, ³J = 7.5 Hz), 5.82 (1H, d, J = 15.5 Hz), 4.13 (2H, q, ³J = 7.0 Hz), 4.12 (2H, q, ³J = 7.0 Hz), 4.07 (2H, q, ${}^{3}J$ = 7.0 Hz), 2.88 (1H, d, ${}^{2}J$ = 16.5 Hz), 2.48 (1H, d, ${}^{2}J$ = 16.5 Hz), 2.49 (1H, dd, ${}^{2}J$ = 14.0 Hz, ${}^{3}J$ = 7.5 Hz), 2.38 (1H, dd, ${}^{2}J$ = 14.0 Hz, ${}^{3}J$ = 7.5 Hz), 1.88 (2H, s), 1.22 (3H, t, ${}^{3}J$ = 7.0 Hz), 1.20 (3H, t, ${}^{3}J$ = 7.0 Hz), 1.18 (3H, t, ${}^{3}J$ = 7.0 Hz) ppm; 13 C NMR δ 170.3, 170.0, 164.7, 140.5, 124.7, 60.6, 59.7, 59.4, 57.8, 41.9, 41.5, 13.3 ppm. Anal. Calcd for C₁₄H₂₃-NO₆: C, 55.80; H, 7.69; N, 4.65. Found: C, 55.97; H, 7.82; N, 4.78.

(*E*)-Diethyl 2-allyl-2-amino-4-hexenodioate (6g): colorless oil (85%); IR (CHCl₃) ν 3300, 1700, 1656 cm⁻¹; ¹H NMR δ 6.79 (1H, dt, J = 15.5 Hz, ³J = 7.5 Hz), 5.83 (1H, d, J = 15.5 Hz), 5.73–5.53 (1H, m), 5.12–5.06 (2H, m) 4.13 (2H, q, ³J = 7.0 Hz), 4.11 (2H, q, ³J = 7.0 Hz), 2.66–2.10 (4H, m), 1.66 (2H, s), 1.22 (3H, t, ³J = 7.0 Hz), 1.21 (3H, t, ³J = 7.0 Hz) mpm; ¹³C NMR δ 165.9, 142.6, 132.0, 225.3, 120.1, 61.4, 60.4, 43.9, 42.1, 14.2 ppm. Anal. Calcd for C₁₃H₂₁NO₄: C, 61.16; H, 8.29; N, 5.49. Found: C, 61.31; H, 8.52; N, 5.74

Acknowledgment. DGCYT (project PB96-0009) is gratefully acknowledged for financial support. We would also like to thank UCM (MS, NMR, and elemental analysis services).

JO9918192